Наука и техника

Печатать страницу
ИЗГИБ – один из основных видов деформации балки, когда прямолинейная балка под действием внешних нагрузок приобретает криволинейную форму. (Корни слова «балка» – немецкие и первоначально это слово означало «бревно»). Во многих конструкциях балка является основным элементом; примером являются многие типы перекрытий, мостов и т.д.

Балка как конструктивный элемент обычно или закреплена концами на соответствующих опорах, или одним концом заделана в стену, тогда как другой конец оказывается свободным (в этом случае балку называют «консоль»), рис.1 (а, б).

Рис. 1(а, б)Рис. 1(а, б)

В некоторых местах балка взаимодействуют с другими телами; схематизируя ситуацию (рис. 2), говорят, что в известных точках к балке приложены заданные сосредоточенные силы P, Q или распределенные нагрузки интенсивности q (килоньютонов на метр).

Рис. 2(а, б)Рис. 2(а, б)

Примером распределенных нагрузок является собственный вес балки или вес достаточно длинного постороннего тела, лежащего на балке (например, снега). Нагрузки (или их часть), направленные перпендикулярно к балке, вызывают ее изгиб; направленные вдоль балки вызывают растяжение или сжатие. Задачей теории изгиба балок является определение прогиба балки под нагрузками, а также напряжений и деформаций в материале балки, естественно, что форма, размеры, материал балки и внешние нагрузки считаются заданными. Затем, при расчете на прочность, задачу трансформируют так: каковы должны быть размеры сечения балки, чтобы при заданных нагрузках напряжения не превышали бы допустимых значений?

Теория изгиба балки была создана Я.Бернулли и Л.Эйлером на рубеже 17–18 вв. Для простоты балка заменяется отрезком прямой, причем считается, что упругие свойства этого отрезка такие же, как у исходной балки. После приложения нагрузок отрезок изгибается и становится криволинейным. Получившаяся кривая называется упругой линией или эластикой. Задача – найти ее уравнение у = f(x). Решение этой задачи основано на утверждении, что в каждой точке упругой линии ее кривизна пропорциональна изгибающему моменту внешних сил, который зависит от координаты x и обозначается M(x). Так как при малых прогибах, которые в первую очередь интересуют инженеров, кривизна кривой практически равна ее второй производной, можно записать дифференциальное уравнение:

Коэффициент пропорциональности EJ называется изгибной жесткостью, он определяет способность балки сопротивляться изгибу и равен произведению модуля упругости материала балки E на момент инерции сечения балки J, который для прямоугольного бруса выражается формулой

где b – ширина сечения, а h – высота (рис. 3,а).

Если сечение балки есть фигура F (рис. 3,б), и начало координат проходит через центр масс сечения, то

J = тт y\up122 dF

т.е. момент инерции площади F определяется как двойной интеграл по этой площади. Название «момент инерции» связано с тем, что этот интеграл в динамике твердого тела связан с инерционными характеристиками тела.

Рис. 3(а, б)Рис. 3(а, б)

Изгибная жесткость учитывает и упругость материала, и форму и размеры сечения балки.

Изгибающий момент M(x) полностью определяется величиной и положением нагрузок и находится по правилам статики. Например, если в консольной балке, нагружаемой на конце силой P, (рис. 2), мысленно провести сечение через точку с координатой x, то момент силы P относительно точки x выражается очевидной формулой

M = Px

(система координат показана на рис. 4), при изменении расстояния сечения от конца балки момент M растет линейно; этот график называют эпюрой изгибающего момента M(x). Напряжения s в сечениях балки пропорциональны M(x):

(координата y отсчитывается вверх от центра сечения).

Рис. 4Рис. 4

В качестве примера можно рассмотреть две одинаковые балки: одну – на двух шарнирных опорах, другую – консольную, нагруженные одинаковыми силами P в середине пролета и на конце соответственно. Длина балок l, сечение – прямоугольник b × h. Прогиб первой балки в середине пролета равен

Прогиб на конце второй балки равен

Для сравнения укажем, что если ту же балку растягивать силой P, то ее удлинение будет равно . Напряжения и деформации в изогнутой балке распределены таким образом, что внешние волокна растянуты, а внутренние – сжаты, причем и напряжения s, и деформации e растут пропорционально расстоянию от середины сечения балки, точнее – от нейтральной линии, где s = 0, и e = 0. Другими словами, внешние слои балки несут большую часть нагрузки, внутренние – значительно меньшую. Поэтому целесообразно так организовать форму сечения балки, чтобы большая часть материала была удалена от центра сечения. Двутавровые (т.е. в виде двойного «Т») и трубчатые сечения балок являются типичными примерами оптимальных (т.е. наилучших в некотором смысле) сечений.

ЛИТЕРАТУРА

Ильюшин А.А., Ленский В.С. Сопротивление материалов. Физматгиз, 1959
Гордон Дж. Почему мы не проваливаемся сквозь пол? Изд-во «Мир», 1971
Безухов Н.И. Основы теории упругости, пластичности и ползучести. М., Высшая школа, 1981

Также вы можете:

Поиск по алфавиту: